
1

1

Romelia Plesa, Alan Williams, Sylvia Boyd,
Daniel Amyot, Diana Inkpen, Gilbert Arbez,

Mohamad Eid

ITI 1120
Lab #2

Translating Algorithms to Java

Assignment 1

• Assignment 1 is due soon. Check Virtual
Campus or the Course Web site for the
exact date and time.

• Questions?

2

3

For today’s lab

• To get to the point that you can write Java programs
to:

– Declare variables

– Read values from the keyboard

– Do some straight-line calculations (no branches or
calls to other algorithms)

– Print the results

• Learn how to code mathematical expressions in Java

• Learn how to translate programs composed of 2
algorithms (main and problem solving) into a Java
program with one class that contains 2 methods

4

Numeric data types

• You must declare the type of each variable you use
– Integers: int
– Real numbers: double

• Why “double ?” Real numbers were originally
referred to as “floating point values” and
there is still a type called float.

• It was discovered that a float wasn’t able to
store enough decimal places for many uses,
and an improved version was introduced called
“double-precision” values, hence: double

3

Ranges of Data Types

• Integers
– byte, 1 byte, -128 to 127
– short, 2 bytes, -32768 to 32767
– int, 4 bytes,

• -2 147 483 648 to -2 147 483 647

– long, 8 bytes, -9x1018 to 9*1018

• Real
– float, 4 bytes, +/- 10-45 to 1038

– double, 8 bytes, +/- 10-324 to 10308

6

Operators

• There is a version of each operator for types int and
double, with one exception:

• Addition: +

• Subtraction: - (also used for negative
 values)

• Multiplication: *

• Division: /

• Modulus: % (remainder after division,
 integers only)

• WARNING: Be careful if you mix integers and real
values in the same program statement.

4

7

Integer division

• When an integer denominator does not divide evenly
into an integer numerator, the division operator /
drops the fraction from the result, producing another
integer.

• The modulus operator % produces the integer
remainder
5 / 3 //divide, and drop fraction, resulting in 1
5 % 3 // remainder when 5 is divided by 3,

 // resulting in 2
• How can you use modulus to tell if a number is even or

odd?

8

Common errors in arithmetic expressions

• Precedence of operators: * before +

 6 + 3 * 2 Result: 12

– Equivalent to 6 + (3 * 2)

– Use parentheses to change the order of evaluation

 (6 + 3) * 2 Result: 18

• Integer division, versus division of real numbers

 5 / 4 Result: 1

 5.0 / 4.0 Result: 1.25

5

9

Getting ready to write programs…..

• Copy Template.java into your working directory.
– You should have a copy on your H: drive; if you

don't, save one there from the course Web Site.
• Copy ITI1120.java into your working directory.
• Start up Dr. Java
• Click on “open” and select Template.java and
ITI1120.java

• Start a "new" file.
• Copy and paste the contents of the Template.java

file into the (empty) unnamed file.
• Close the file Template.java

10

Java program structure (for now)

1. Consists of one class with two methods

• The “main” that is used to interact with the user

• The second in the implementation of an algorithm model to
solve some problem.

2. Translate the “main” algorithm model to the “main” method, for

• Setting up input from the keyboard.

• Asking the user to enter the values of each GIVEN of the

problem solving algorithm/method.

• Call the problem solving method.

• Print the results returned by the problem solving method to
the console

3. Translate the problem solving algorithm to the problem solving
method

• Results should be returned

6

11

Classes Reading from the keyboard

• The Scanner Class
nextInt(): Returns an integer of type int.
nextDouble(): Returns a “real” number of type double
nextBoolean(): Returns a value of true or false as a value

 of type boolean
nextLine(): Returns a String with the entire remaining

 contents of the line.

• The ITI1120 Class
ITI1120.readInt() : Returns an integer of type int
ITI1120.readDouble() : Returns a real number of type

double

ITI1120.readChar() : Returns a character of type char
ITI1120.readBoolean() : Returns a value of type boolean
ITI1120.readDoubleLine() : Returns a array of double
ITI1120.readIntLine() : Returns an array of int
ITI1120.readCharLine() : Returns an array of char
ITI1120.readString() : Returns a string of type String

12

Exercise 1

• Translate the pseudocode main algorithm to the main method.
GIVENS: (none)

RESULTS: (none)

INTERMEDIATE:

 n1, n2 ,n3 (three real numbers)

 average (the average of n2, n2, n3)

HEADER: main()

BODY:

 (get the numbers from the user)

 printLine(“Please enter three numbers”)

 n1 readReal()

 n2 readReal()

 n3 readReal()

 (Call the problem solving algorithm)

 average computeAverage(n1, n2, n3)

 (Print the results)

 printLine(“The average is “, average);

7

13

Exercise 1

• Translate the pseudocode algorithm to a problem solving for
averaging three numbers.

GIVENS: num1, num2 ,num3 (three numbers)

RESULTS: avg (the average of num1, num2, and num3)

INTERMEDIATE:

 sum (the sum of num1, num2, num3)

HEADER: (avg) computeAverage(num1, num2 ,num3)

BODY:

 sum num2 + num2 + num3

 avg sum / 3

Exercice 2

• Programming Model
– Review the programming model in the next slide

(not that it concerns the program from
exercise 1).

– Complete it for the execution of the program
given that the user types in the values 2.3, 4.6,
and 7.8 when requested.

• Show how values changed in the variables.
• Show with arrows how some values (givens/results)

are exchanged between methods.
• Show the dialogue with the user on the screen.

– If you have printed this presentation, you can
complete the model on paper.

– Otherwise, the Visio template, Lab2Ex2.vsd has
been provided so can complete the model
electronically.

8

15

Exercise 2

16

Using the Debugger

• Using Dr. Java’s “debug mode” (“Debugger Debug
Mode”), you can do the equivalent of an algorithm
trace for a Java program.

– You can go through the program one step at a time.

– You can stop the program at “break points” of your
choosing.

– You can check the values of variables.

• Try this for the program you wrote for Exercise 1,
the average of 3 numbers.

• Use the programming mode to follow the execution of
the program.

9

17

Break Points

• Select a line of your program, and under the debug menu,
choose “toggle break point on this line”.

– The first System.out.println statement is a good
choice

– This will change the colour of the chosen line of code to
red.

• You can also right-click on a line and select “Toggle
BreakPoint”.

– Many lines can be (de)selected this way.

• When you run the program, the program will stop just
before this line is going to be executed.

• In the interactions window, the debugger will tell you
where the program is, and the current line of code will be
coloured light blue.

18

Watches

• To keep track of the values of variables as they
change, use a “watch”

– Double-click on an empty area in the “name”
column, then type in the name of a variable, and hit
‘enter’.

– If the variable already has a value, it will be shown.
If the variable does not yet have a value, the value
will say <not found>.

• Try this for all of the variables you use in your
program for example 1.

• As the program executes, each time the program
stops in the debugger, the current values of the
variables will be shown.

10

19

Controlling Execution

• With the debugger, there are four ways to advance
through a program

• Resume

– The program will run up to the next break point, or
the end of the program if there are no more break
points.

• Step into

– Use this for the most detailed debugging

– The program will move to the next statement –
even if that statement is in another method.

– This will not go into methods in the Java software
development kit, but the methods in the class
ITI1120 shall be visited..

20

Controlling Execution

• Step over
– Most commonly used
– Use this to move to the next statement in the current

method.
– If the current line of the program calls one or more

methods, all of those methods will be invoked, and returned
from.

• Step out
– Often used when you have stepped into a method and you

want to go back quickly to the previous method.
– Use this to run as far as the end of the current method.

• Try using “Step over” to go through your Exercise 1 program one

statement at a time.
• But use “Step into” when you arrive at the call of the problem

solving method (computeAverage).

11

21

Exercise 3

• Develop a Java program converting temperature
expressed in Fahrenheit to Celsius.

• Formula: c (f - 32) * 5 / 9

– Develop your algorithms with Word – start with
the file Lab2Ex3.doc.

– Translate the algorithms to Java. Start with
Template.java.

– The Main algorithm (main() method) requests from
the user a temperature value in degrees
Fahrenheit and displays the temperature value in
Celsius.

– The problem solving algorithm/method is given the
Fahrenheit temperature and produces the Celsius
temperature as a result.

22

Exercise 4

• Develop a Java program that takes a two digit
positive integer and reverse its digits.

– For example: The program will transform the two
digit integer 12 into 21.

• Hint:

– The first digit is the result of dividing the integer
by 10 (integer division)

– The second digit is the remainder of the division
by 10

• e.g.:original integer: 12
– first digit is 12 / 10 = 1

– second digit is 12 % 10 = 2

12

Exercise 4 - continued

• Develop your algorithms with Word – start
with the file Lab2Ex4.doc.

• Translate the algorithms to Java. Start with
Template.java.

• The Main algorithm (main() method) requests
from the user a number with 2 digits and
displays the number with the digits reversed.

• The problem solving algorithm/method is
given a 2 digit number and produces the
number with the digits reversed.

24

Built-in math functions

• The Math class

– Automatically loaded: no import required.

• Math.abs() - absolute value | x |

• Math.pow() - exponentiation

• Math.sqrt() - square root x
• Math.round(n) - n rounded
• Math.PI = 3.14159…
• Math.E = 2.71828…

• Examples

– Math.abs(-3) Result: 3 | -3 | = 3

– Math.pow(2,5) Result: 32.0 25 = 32

– Math.sqrt(49) Result: 7.0 49 = 7

• See other math functions in Section 5.9 of the textbook

• On line description at
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

13

25

Exercise 5

• Given 2 points in the X-Y plane (XA,YA) and (XB, YB)
compute the distance between the two points,
according to the following formula:

• Develop your algorithms with Word – start with the

file Lab2Ex5.doc.
• Translate the algorithms to Java. Start with

Template.java.
• The Main algorithm (main() method) requests from

the user the coordinates of 2 points and displays the
distance between the 2 points.

• The problem solving algorithm/method is given two
coordinates and computes the distance as the result.

22)()(YBYAXBXA

26

Attention!

• Start your programs with a personalized version of
the Template.java provided (insert your name,
student number, etc.)

• According to standard convention, the class names in
Java start with Upper-case and names for variables
and methods start with lower case.

• Use indentation to make your programs readable

– HINT: in Dr Java, if you type Cntrl-A (all your
code will be selected) and then type Tab, Dr Java
will organize your code using standard indentation
convention.

14

For Super-Users

• In Dr. Java, click on Tools, and select the
menu “Javadoc”

– With comments that have specific format,

you can generate Web pages that serve as
documentation for your program

– This feature may be useful later in the
course.

