
1

1

Romelia Plesa, Alan Williams, Sylvia Boyd,
Daniel Amyot, Diana Inkpen, Gilbert Arbez,

Mohamad Eid

ITI 1120
Lab #2

Translating Algorithms to Java

Assignment 1

• Assignment 1 is due soon. Check Virtual
Campus or the Course Web site for the
exact date and time.

• Questions?

2

3

For today’s lab

• To get to the point that you can write Java programs
to:

– Declare variables

– Read values from the keyboard

– Do some straight-line calculations (no branches or
calls to other algorithms)

– Print the results

• Learn how to code mathematical expressions in Java

• Learn how to translate programs composed of 2
algorithms (main and problem solving) into a Java
program with one class that contains 2 methods

4

Numeric data types

• You must declare the type of each variable you use
– Integers: int
– Real numbers: double

• Why “double ?” Real numbers were originally
referred to as “floating point values” and
there is still a type called float.

• It was discovered that a float wasn’t able to
store enough decimal places for many uses,
and an improved version was introduced called
“double-precision” values, hence: double

3

Ranges of Data Types

• Integers
– byte, 1 byte, -128 to 127
– short, 2 bytes, -32768 to 32767
– int, 4 bytes,

• -2 147 483 648 to -2 147 483 647

– long, 8 bytes, -9x1018 to 9*1018

• Real
– float, 4 bytes, +/- 10-45 to 1038

– double, 8 bytes, +/- 10-324 to 10308

6

Operators

• There is a version of each operator for types int and
double, with one exception:

• Addition: +

• Subtraction: - (also used for negative
 values)

• Multiplication: *

• Division: /

• Modulus: % (remainder after division,
 integers only)

• WARNING: Be careful if you mix integers and real
values in the same program statement.

4

7

Integer division

• When an integer denominator does not divide evenly
into an integer numerator, the division operator /
drops the fraction from the result, producing another
integer.

• The modulus operator % produces the integer
remainder
5 / 3 //divide, and drop fraction, resulting in 1
5 % 3 // remainder when 5 is divided by 3,

 // resulting in 2
• How can you use modulus to tell if a number is even or

odd?

8

Common errors in arithmetic expressions

• Precedence of operators: * before +

 6 + 3 * 2 Result: 12

– Equivalent to 6 + (3 * 2)

– Use parentheses to change the order of evaluation

 (6 + 3) * 2 Result: 18

• Integer division, versus division of real numbers

 5 / 4 Result: 1

 5.0 / 4.0 Result: 1.25

5

9

Getting ready to write programs…..

• Copy Template.java into your working directory.
– You should have a copy on your H: drive; if you

don't, save one there from the course Web Site.
• Copy ITI1120.java into your working directory.
• Start up Dr. Java
• Click on “open” and select Template.java and
ITI1120.java

• Start a "new" file.
• Copy and paste the contents of the Template.java

file into the (empty) unnamed file.
• Close the file Template.java

10

Java program structure (for now)

1. Consists of one class with two methods

• The “main” that is used to interact with the user

• The second in the implementation of an algorithm model to
solve some problem.

2. Translate the “main” algorithm model to the “main” method, for

• Setting up input from the keyboard.

• Asking the user to enter the values of each GIVEN of the

problem solving algorithm/method.

• Call the problem solving method.

• Print the results returned by the problem solving method to
the console

3. Translate the problem solving algorithm to the problem solving
method

• Results should be returned

6

11

Classes Reading from the keyboard

• The Scanner Class
nextInt(): Returns an integer of type int.
nextDouble(): Returns a “real” number of type double
nextBoolean(): Returns a value of true or false as a value

 of type boolean
nextLine(): Returns a String with the entire remaining

 contents of the line.

• The ITI1120 Class
ITI1120.readInt() : Returns an integer of type int
ITI1120.readDouble() : Returns a real number of type

double

ITI1120.readChar() : Returns a character of type char
ITI1120.readBoolean() : Returns a value of type boolean
ITI1120.readDoubleLine() : Returns a array of double
ITI1120.readIntLine() : Returns an array of int
ITI1120.readCharLine() : Returns an array of char
ITI1120.readString() : Returns a string of type String

12

Exercise 1

• Translate the pseudocode main algorithm to the main method.
GIVENS: (none)

RESULTS: (none)

INTERMEDIATE:

 n1, n2 ,n3 (three real numbers)

 average (the average of n2, n2, n3)

HEADER: main()

BODY:

 (get the numbers from the user)

 printLine(“Please enter three numbers”)

 n1  readReal()

 n2  readReal()

 n3  readReal()

 (Call the problem solving algorithm)

 average  computeAverage(n1, n2, n3)

 (Print the results)

 printLine(“The average is “, average);

7

13

Exercise 1

• Translate the pseudocode algorithm to a problem solving for
averaging three numbers.

GIVENS: num1, num2 ,num3 (three numbers)

RESULTS: avg (the average of num1, num2, and num3)

INTERMEDIATE:

 sum (the sum of num1, num2, num3)

HEADER: (avg)  computeAverage(num1, num2 ,num3)

BODY:

 sum  num2 + num2 + num3

 avg  sum / 3

Exercice 2

• Programming Model
– Review the programming model in the next slide

(not that it concerns the program from
exercise 1).

– Complete it for the execution of the program
given that the user types in the values 2.3, 4.6,
and 7.8 when requested.

• Show how values changed in the variables.
• Show with arrows how some values (givens/results)

are exchanged between methods.
• Show the dialogue with the user on the screen.

– If you have printed this presentation, you can
complete the model on paper.

– Otherwise, the Visio template, Lab2Ex2.vsd has
been provided so can complete the model
electronically.

8

15

Exercise 2

16

Using the Debugger

• Using Dr. Java’s “debug mode” (“Debugger  Debug
Mode”), you can do the equivalent of an algorithm
trace for a Java program.

– You can go through the program one step at a time.

– You can stop the program at “break points” of your
choosing.

– You can check the values of variables.

• Try this for the program you wrote for Exercise 1,
the average of 3 numbers.

• Use the programming mode to follow the execution of
the program.

9

17

Break Points

• Select a line of your program, and under the debug menu,
choose “toggle break point on this line”.

– The first System.out.println statement is a good
choice

– This will change the colour of the chosen line of code to
red.

• You can also right-click on a line and select “Toggle
BreakPoint”.

– Many lines can be (de)selected this way.

• When you run the program, the program will stop just
before this line is going to be executed.

• In the interactions window, the debugger will tell you
where the program is, and the current line of code will be
coloured light blue.

18

Watches

• To keep track of the values of variables as they
change, use a “watch”

– Double-click on an empty area in the “name”
column, then type in the name of a variable, and hit
‘enter’.

– If the variable already has a value, it will be shown.
If the variable does not yet have a value, the value
will say <not found>.

• Try this for all of the variables you use in your
program for example 1.

• As the program executes, each time the program
stops in the debugger, the current values of the
variables will be shown.

10

19

Controlling Execution

• With the debugger, there are four ways to advance
through a program

• Resume

– The program will run up to the next break point, or
the end of the program if there are no more break
points.

• Step into

– Use this for the most detailed debugging

– The program will move to the next statement –
even if that statement is in another method.

– This will not go into methods in the Java software
development kit, but the methods in the class
ITI1120 shall be visited..

20

Controlling Execution

• Step over
– Most commonly used
– Use this to move to the next statement in the current

method.
– If the current line of the program calls one or more

methods, all of those methods will be invoked, and returned
from.

• Step out
– Often used when you have stepped into a method and you

want to go back quickly to the previous method.
– Use this to run as far as the end of the current method.

• Try using “Step over” to go through your Exercise 1 program one

statement at a time.
• But use “Step into” when you arrive at the call of the problem

solving method (computeAverage).

11

21

Exercise 3

• Develop a Java program converting temperature
expressed in Fahrenheit to Celsius.

• Formula: c  (f - 32) * 5 / 9

– Develop your algorithms with Word – start with
the file Lab2Ex3.doc.

– Translate the algorithms to Java. Start with
Template.java.

– The Main algorithm (main() method) requests from
the user a temperature value in degrees
Fahrenheit and displays the temperature value in
Celsius.

– The problem solving algorithm/method is given the
Fahrenheit temperature and produces the Celsius
temperature as a result.

22

Exercise 4

• Develop a Java program that takes a two digit
positive integer and reverse its digits.

– For example: The program will transform the two
digit integer 12 into 21.

• Hint:

– The first digit is the result of dividing the integer
by 10 (integer division)

– The second digit is the remainder of the division
by 10

• e.g.:original integer: 12
– first digit is 12 / 10 = 1

– second digit is 12 % 10 = 2

12

Exercise 4 - continued

• Develop your algorithms with Word – start
with the file Lab2Ex4.doc.

• Translate the algorithms to Java. Start with
Template.java.

• The Main algorithm (main() method) requests
from the user a number with 2 digits and
displays the number with the digits reversed.

• The problem solving algorithm/method is
given a 2 digit number and produces the
number with the digits reversed.

24

Built-in math functions

• The Math class

– Automatically loaded: no import required.

• Math.abs() - absolute value | x |

• Math.pow() - exponentiation

• Math.sqrt() - square root  x
• Math.round(n) - n rounded
• Math.PI = 3.14159…
• Math.E = 2.71828…

• Examples

– Math.abs(-3) Result: 3 | -3 | = 3

– Math.pow(2,5) Result: 32.0 25 = 32

– Math.sqrt(49) Result: 7.0  49 = 7

• See other math functions in Section 5.9 of the textbook

• On line description at
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

13

25

Exercise 5

• Given 2 points in the X-Y plane (XA,YA) and (XB, YB)
compute the distance between the two points,
according to the following formula:

• Develop your algorithms with Word – start with the

file Lab2Ex5.doc.
• Translate the algorithms to Java. Start with

Template.java.
• The Main algorithm (main() method) requests from

the user the coordinates of 2 points and displays the
distance between the 2 points.

• The problem solving algorithm/method is given two
coordinates and computes the distance as the result.

22)()(YBYAXBXA 

26

Attention!

• Start your programs with a personalized version of
the Template.java provided (insert your name,
student number, etc.)

• According to standard convention, the class names in
Java start with Upper-case and names for variables
and methods start with lower case.

• Use indentation to make your programs readable

– HINT: in Dr Java, if you type Cntrl-A (all your
code will be selected) and then type Tab, Dr Java
will organize your code using standard indentation
convention.

14

For Super-Users 

• In Dr. Java, click on Tools, and select the
menu “Javadoc”

– With comments that have specific format,

you can generate Web pages that serve as
documentation for your program

– This feature may be useful later in the
course.

